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I Introduction

The structure of turbulent shear flows has been the object of an

enormous research effort. In i tially , the mean flow field was mapped and

the data served to construct prediction-mode ls of the “mixing- length”

and “eddy—viscosity ” type. When the shortcomings of those models became

obvious , more sophisticated measurements which included statistica l

quantities of the turbulence field were reported in the literature. These,

in turn , ted to improvements in modeling which consider now the balance

of turbulent energy or/and the time required for decay of certain eddy

sizes. All models , however , inc lude a number of arb it rary cons tant s whi ch

are altered from flow to flow or from reg i on to region of the same flow .

These constants represent a measure of our ignorance and their number

increases with the l eve l of sophistication of the model.

Some physical phenomena wh i ch are charac ter is ti c of tur bule nt shear

flows were observed : (1) The existence of a well defined interface which

separates the turbu l~ nt fluid from its environment.

( i i )  The existence of large scale structures which are responsible

uJ for mos t of the vi gorous t rans por t phenomena associated with turbulent shear

LI.. flows . 
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(i ii) The intermittency of the small scale dissipative

structure.

(iv) The intermittent (patchy) transition from laminar to

turbulent flows .

We have decided to s tudy in deta il the la tter phenomenon because

it contains al l  the fea tures of fu l ly tu rbulen t fl ows; it i s more orderly;

i t represents a change from a flow which is represented by a solution of

the equations of motion (e.g., lam ina r boundary lay er) to a flow which

can , at best, be represented by a set of model equations; and it was not

as extensively i nvestigated as the fully developed turbulent flow s

because of its unsteady nature wh i ch requires highly sophisticated

measu r ing sensors and da ta acquisi ti on techn iques .

c) ~::°
~ ~~~

L
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II. A Brief Description of the Findings in Transitional Pipe Flow

At first we stud i ed transition in a pi ’~1e flow because we thought

that an axisymmetric flow will be simpler to map and ana l yze than a three

dimensional configuration (an assumption which proved to be wrong) . The

The findin gs are reported in a paper by Wygnanski and Champagne (1973).

Some of the highlights are listed below :

(1) A surprisingly high transition Reynolds number (based on

the p ipe diame ter and an average ve loc ity in the p ipe ReIR > 6~~10
Lt
) can

be obtained in a comercially availab le aluminum pipe provided there are

no steps at the joints and the flow at the entrance is free of large

perturbations .

(2) Poiseu llle type flow (i.e., fully developed lam i nar flow

havin g a parabolic velocity profile) actual l y never became turbulent

because transition was preempted by the fact that the pipe was never long

enough to retain a parabolic profile. Since the criterion determining the

in ’et length of a pipe is given by x/DRe ~~~.
. constant , for a pipe of f i x ed

geometry the inlet reg i on increases in length with increasing Re. Only

af ter the fully developed region van ished tra ns it ion occ u rred in the boundary

layer. Preliminary observations ind i cated that the initial breakdown pro-

cess is very simil ar to that in a boundary layer on a flat plate.

(3) A turbulent slug wh i ch results from t ransition in a

boundary l ayer (at Re~~ 3000) occupies the entir3 cross section of a pipe

and is comparable in length with the pipe . The slug grows in length as

It proceeds downstream by entraining laminar fluid. The interior of a slug

is iden tical to a fully developed turbulent pipe flow , but at the edges

there is an enhanced turbu l ent activity. Energy considerations suggest tha t
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turbulence propagates into non-turbulent fluid by diffu sion .

(4) A un i que relation exists between a veloci ty of a given

in terface and the ve locity of a fluid wh i ch prevents any turbulen t flu id

from leaving the slug . This observation was later extended to other flows.

(5) Whe n a large stat ionary dis tu rbance i s introduced near the

inle t of the pipe the flow becomes locally turbulent. (This type of

transition has nothing in common with the pipe or a boundary layer because

the flow is forced to separate by the disturbance and free shear l ayers are

very unstable.) The pipe flow slowly returns to its laminar state provided

Re .~~20OO. (Consequently, Re ~~20OO is the highest Reynold number for

which the p ipe flow remains stable to ~~~ ki nd of d i s turbance , large or

small.) This leads one to conclude that one should not expect a small

perturbation stability calculation to show amplification at this Re even

if the ca l culation includes non-linear terms. With the large disturbance

at the inlet , the flow becomes fully turbulent at Re ‘
~~3OOO but at Re~~~2OOO

it is intermittent. At Re 2250 a steady state is attained for wh i ch the

turb ulen t reg i ons neither grow nor decay. These turbulen t reg ions which

we called “puffs~ were the subject of our second investigation (Wygnanski ,

Sokolov and Friedman (1975)). It was observed that (a) All puffs at the

same Re are of equa l l ength implying that the puff must be the most basic

turbulent module in transitiona l p ipe flow rather than a slug (it should

be analogous to the turbulent “spot” in a boundary layer).

(b) The turbulen t intensity in the puff increases gradually

towards the rear interface where it attains a maximum. It is also con-

centrated In the centra l reg i on of the pi pe rather than near the wall.

(c) By process i ng the data digitally the accuracy of determining

the location of the trailing interface in the central reg ion of the pi pe
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was better than 0.003 seconds , corres pondi ng to a spat ial resolu t ion of

approx i mately 0.070 (D being the diameter of the pipe) while the length

of the puff is approximately 25D. This enabled a detection of a large

“eddy ” within a puff which may be represented by a toroidal vortex

located near the trailing interface . Most of the turbulen t energy eminates

from the center of this vortex.

(d) By i ncreasing the Reynolds number slightl y the “puff” tends

to split by leav i ng the last large eddy (toroidal vortex) beh i nd . Turbulent

energy considerations lead one to believe tha t the splitting of a puff is

caused by negat ive produc t ion which is rela ted to the flow f ie ld  induced

by the toroid a l eddy.

We made an attempt to control the splitting by regulating its occurrance

in terms of time and space but so far we were not successful. It is believed

that successive splitting l eads to secondary breakdown and to the relation-

ship between puffs and slugs. We were able to determine by introducing

dis tu rbances far away fr om the inle t at low Re tha t both forms of transiti on

(i.e., puffs and slugs) can exist in a fully developed pipe flow and not

just in the inlet region . The investigation of transition in a pipe still

continues because it is believed that the puff plays the same role in a

fully developed turbulent pipe flow as the spot does in a boundary layer.

Perhaps there is actually a relationship between the two which is simply

masked by the different geometries.
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I I I .  A Brief Description of the Findings in a Boundary Layer

Al though the turbulent spot in a laminar boundary layer was in-

vestigated previousl y by Schubauer and Klebanoff (1956) we decided to

repeat the investigation in greater deta il, it was established that:

(1) The spot attains a universal shape some distance downstream

of the disturbance that generates it. The shape of the spot appears to

be ind ependent of the thickness of the laminar boundary l ayer surrounding

the spot and the loca l Reynolds number.

(2) The propagation veloc i ty of the trai ling interface of the

spot is approx i mately constant and equal 0.5 UQ~ (U~~ 
is the freestream

veloc i ty). The propagation velocity of the l ead ng interface is approx i mately

0.9U near the centerline of the spot but it tapers off with increasing

spanwise location . Near the “wing-tip ” (looking at the spot in its plan

vi ew) the propagation velocity of the leading interface approaches the

propagation velocity of the trailing interface . This may be an important

find i ng sin ce it implies that two spots generated side by side (i.e. , at

diff erent spanwise locations) should retain some of their identity very

far downstream. The identifiable reg i on w i l l  be lim ited to the central

portion of the spot near its leading interface .

(3) Velocity measurements inside the spot indicated that spots

of si milar shape also represent similar veloc i ty f ields. This enabl ed

us to calculate typ i cal boundary l ayer parameters (e.g., momentum th i ckness,

disp lacement thickness , etc.) for the spot.

(4) The turbulent velocity profile within the spot obeys the

un iversal logarthmic relationship for the wall reg i on but does not obey

the “outer law” implyin g that there may be only one l ength scale associated
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w i t h  the “spot” wh ile there are two length scales associated with a

turbulent boundary layer.

(5) The stream lines on the plane of symetry of the spot in

a frame mov i ng at either interface indicate again that an interface

always entrains non-turbulent fluid.

(6) The spot may be regarded as a large eddy wh ich is con-

vected at an intermediate velocity of O.65U
~~
. The observa tions associated

wi th the spot have some resemblance to the visual observations made by

Offen and Kl i ne in a turbulent boundary layer.

After mapp i ng the transitional spot in an otherwise laminar boundary

layer , we explored further a possible relationship between the coheren t

structure in a fully-developed , turbulent boundary layer and the transitional

spot. After all , the turbulent boundary layer is generated initially by

the merg i ng of such spots. This , however , rep resen ts a fa i rl y substantial

deviation from tradition which suggests that the “lif e—span ” of a large

eddy does not exceed 5 boundary layer thicknesses . In the experimen t

reported by Zilberman , et. al. (1977) a marked transitional spot was

followed after it penetrated the turbulent boundary layer over a dis tance

of approximately 100 initial boundary layer thicknesses without the use of

arb i trary threshold criteria. Furthermore , since there was no app reciable

deterioration in the signal with distance it would appea r that the trans—

i tional spot could be tracked indefinitely in a turbulent boundary layer

at those moderate Reynolds numbers. The structure , thus , resolv ed agains t

the background of the mean turbulent veloc i ty profile s characterized

by a region of velocity defect in the outer part of the boundary layer ,

wh i ch approaches the wall as one proceeds in the spanwise direction from
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the cen terl ine of the st ruc tu re. A relatively narrow region of ve l ocity

excess is concen trated near the centerline and the wall. The overall

structure is convected downstream at a speed equal to 9O~ U .  Thus ,

all features measured are in detail agreement with the conditionally

sampled observations at the outer part of the turbulent boundary l ayer

and are also in accord with the correlation measurements in the wall

reg ion. Representations of the flow pattern in a coordinate system

traveling with the spot show temporal sequences similar to those visual-

i zed us i n g dye techn iq ues. Thus , it was possible to map quantitativel y

the structure of the large eddy in a turbulent boundary layer. Moreover

the link between the transitiona l spot and the coherent eddy structure

in a tu rbu lent boundary layer may provide a new approach towards a more

fundamental understand i ng and modeling of the turbu l ent boundary layer

it self wh ich w i l l , hope f u l l y ,  remove some of the emp iricism currentl y used .
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IV. Research Current ly in Progress

An interaction study between adjacent spots is currently under

way in Tel -Aviv. The purpose of this stud y is to explain how a trans-

itional spot which continuousl y spreads in a laminar boundary l ayer is

reduced to its observed dimensions in a turbulent boundary layer.

While searching for a possible mechanism wh i ch would explain the

generation of small scale eddies within a spot , we d i scover ed at USC a

re lat ionship which could link the growth of a spot to 101 lm ien-Sch l icht ing

stability theory . A wave train was observed trailing the transitional

spot at its “wing ti ps” (i.e., away from the plane of symmetry). This

wave train travels at a vel oc i ty at which the most unstable Toilmien-

Sch lichting waves would travel at that Reynolds number and the waves in

it possess the correct frequency . This could be a very important finding

because the relationship between transition and Tollmien-Sch lichting waves

was not clearly identified in the past. Only after Tollrn ien -Sch lichting

waves were introduced into the boundary layer artifica ll y with a vibrating

ribbon they were observed to amplif y and breakdown , but even then , the

relation between the amplification of the unstable waves and the breakdown

to turbulence was not well established .

Fi gure 1 shows velocity traces obtained from a rake of 12 hot wires

wh i ch are placed in the transverse direction , the wave train follow i ng the

spot is obvious from the f ig u re.
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